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Motivated by recent studies of colloidal particles in optical-tweezer arrays, we study a two-dimensional
model of a colloidal suspension in a periodic potential. The particles tend to stay near potential minima,
approximating a lattice gas. The interparticle interaction, a sum of Yukawa terms, features short-range repul-
sion and attraction at somewhat larger separations, such that two particles cannot occupy the same potential
well, but occupation of adjacent cells is energetically favored. Monte Carlo simulation reveals that the equi-
librium system exhibits condensation, as in the Ising model or lattice gas with conserved magnetization; the
transition appears to be continuous at one-half occupancy. We study the effect of biased hopping, favoring
motion along one lattice direction, as might be generated by a steady flow relative to the potential array. This
system is found to exhibit features of the driven lattice gas: the interface is oriented along the drive, and
appears to be smooth. A weak drive facilitates ordering of the particles into high- and low-density regions,
while stronger bias tends to destroy order, and leads to very large energy fluctuations. We also study ordering
in a moving periodic potential. Our results suggest possible realizations of equilibrium and driven lattice gases
in a colloidal suspension subject to an optical tweezer array.
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I. INTRODUCTION

Lattice gas models are an essential tool of statistical me-
chanics. In addition to their role as minimal models of fluids,
they are important in the study of phase transitions in adlay-
ers �1–3�. The equilibrium properties of this class of models
are well understood �4�. Lattice gases are readily extended to
the study of time-dependent phenomena, by defining a sto-
chastic particle dynamics �typically via hopping� that obeys
detailed balance with respect to the Hamiltonian. In driven
lattice gas models, also known as driven diffusive systems
�DDSs� �5–7�, hopping is biased to favor motion along one
of the principal lattice directions, with periodic boundaries
along this direction. Since DDS dynamics violates detailed
balance, it represents an out-of-equilibrium situation. The
driven system exhibits a nonequilibrium stationary state with
a nonzero current, and anisotropic ordering �8,9�. DDSs have
been studied extensively as prototypes of nonequilibrium
phase transitions. Despite their simplicity, these systems ex-
hibit surprising characteristics �6�, for example, the increase
of the critical temperature with drive strength in the case of
attractive interactions. A driven fluid in continuous space was
also found to possess an unusual phase diagram �10�. In this
case, the drive appears to oppose ordering, as reflected in a
reduced critical temperature, compared with equilibrium.

Although much effort has been devoted to studying DDSs
theoretically and in simulations, there are as yet no experi-
mental realizations. Colloidal suspensions offer some prom-
ise in this regard. With the availability of optical-tweezer
arrays, the dynamics of colloidal particles in an external po-
tential has been investigated intensively �11–15�. A study of
colloidal particles in a periodic potential revealed a variety of
dynamic regimes as a function of the viscous friction coeffi-

cient �11�. At low friction, the motion at long times consists
of jumps between adjacent potential minima, resembling that
of particles in a lattice gas with nearest-neighbor hopping.

Motivated by this correspondence, we study a two-
dimensional model system in continuous space, of colloid-
like particles in a periodic background potential. The poten-
tial is taken so that the particles spend most of the time near
a potential minimum. The interparticle potential, a sum of
Yukawa terms, features short-range repulsion and attraction
at somewhat larger separations, such that two particles can-
not occupy the same potential well, but occupation of adja-
cent cells is energetically favored. We study the phase behav-
ior in Monte Carlo simulations, beginning with the undriven
�equilibrium� case, followed by an exploration of the effects
of driving, and a brief examination of another nonequilib-
rium version, in which there is no drive, but the external
potential is time dependent.

Although the present model includes, in the interests of
computational efficiency, certain unrealistic features, we be-
lieve that it represents a significant step toward devising a
system capable of experimental realization, and exhibiting
properties characteristic of DDSs. Our results suggest that it
is possible to realize lattice-gas-like systems, both equilib-
rium and driven, in a colloidal suspension subject to a peri-
odic external potential.

In the following section we define the model and simula-
tion method. In Sec. III we present simulation results, while
Sec. IV contains a summary and discussion of open issues,
regarding both the model system and possible realizations of
DDSs in experiments on colloids.

II. MODEL AND SIMULATIONS

We study a two-dimensional system of N particles inter-
acting via a pairwise potential u�r�, and subject to a periodic
external potential V�x ,y�. The latter is of the form used to
model an optical-tweezer array �15�,
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V�x,y� =
V0

1 + e−g�x,y� , �1�

where g�x ,y�=A�cos�2�x�+cos�2�y�−2B�. For V0�0 the
potential minima fall at the sites of the integer square lattice
�n+1/2 ,m+1/2�; the parameters A and B together control
the well depth and the curvature near the potential minimum.
The interparticle potential is given by the sum of a short-
range repulsive term and a slightly longer-range attractive
term, both of Yukawa form �16�:

u�r� = V1
e−�1r

r
− V2

e−�2r

r
− Vc �2�

for r�rc, and u=0 for r�rc. Here �1,2 are characteristic
lengths and Vc is a constant taken so that u�rc�=0. The pa-
rameter values used in this study ��1=3.30, �2=2.21, V1
=200, V2=90, V0=40, A=5, B=−0.5, and rc=2.5�, lead to a
strong short-range repulsion that effectively prohibits two
particles from occupying the same potential well at the tem-
peratures of interest. The minimum of the interparticle po-
tential falls at r=1, favoring occupation of neighboring cells.
�For r=1, �2 and 2, one has u=−2.347,−1.35, and −0.283,
respectively.� The ground-state energy per particle is −8.396,
about 4.2 times that of the nearest-neighbor square lattice gas
with unit interaction. A crude estimate of the critical tem-
perature is then 4.2 times that of the nearest-neighbor lattice
gas �Tc�0.5673�, that is, Tc�2.4.

We perform Metropolis Monte Carlo �MC� simulations of
the system defined above. The MC time step is defined as
one attempted move per particle. In each move, a randomly
chosen particle is subject to a random displacement �r
= ��x ,�y�, with components distributed uniformly on the in-
terval �−1,1�.

As in studies of DDSs, the drive takes the form of a force
f, such that the work done on a particle when it suffers a
displacement �r is f ·�r. As noted, the system is periodic in
the direction of the drive �in practice, the x direction�, so that
f cannot be written as the gradient of a potential. The accep-
tance probability for a particle displacement �r is

P��r� = min�1,exp�− ���E − f · �r��� , �3�

where �E is the change in energy and � represents inverse
temperature, in units such that kB=1.

The quantities of principal interest are the average energy
	E
, the order parameter m= �mx ,my�, and the corresponding
fluctuations. To define the order parameter we introduce lat-
tice gas variables: 	ij =1 if the cell centered at �i+1/2 , j
+1/2� is occupied, and zero otherwise. Then an appropriate
order parameter for a lattice gas with conserved particle den-
sity can be defined, for a system of L
L sites, via �7�

mx =
1

L3�
j=1

L ��
i=1

L

�1 − 2	ij�2

, �4�

with my given by exchanging indices i and j in the sums. In
a disordered phase 	mx
= 	my
=0. In a half-occupied system,
a maximally ordered, isotropic configuration �a square of
side L /�2� has mx=my =1/2. In a system with periodic

boundaries, however, the surface energy is smaller in a strip
configuration. If the particles occupy all sites the region j0
� j� j0+L /2, then mx=1 and my =0; the values are ex-
changed for a strip oriented along the y direction. m
=�mx

2+my
2 characterizes overall ordering. In equilibrium, the

two orientations are equally likely, but for low temperatures
and reasonably large systems, the typical time for switching
between them is much larger than practical simulation times,
so it is interesting to characterize the degree of order by the
anisotropy parameter �m�m�−m�, where m�

�max�	mx
 , 	my
�, and m� denotes the lesser of the two
components. Experience with DDSs shows that in driven
systems m� is always along the drive direction.

III. SIMULATION RESULTS

A. Equilibrium properties

We study half-occupied systems, N=L2 /2, in periodic
cells of linear size L=10, 20, 30, and 50. Our results repre-
sent averages over the stationary regime of ten or more in-
dependent realizations, each of 106 or more time steps. Fig-
ure 1 shows that the mean energy e per particle exhibits the
qualitative behavior typical of lattice gases or fluids with a
hard core and short-range attraction. Evidence of a phase
transition is seen in the progressive growth, with system size,
of the peak in the specific heat per particle, c=var�E� /NT2,
shown in Fig. 2. The specific heat maxima fall at tempera-
tures Tm=2.10�2�, 2.50�2�, 2.63�1�, and 2.66�1� for sizes L
=10, 20, 30, and 50, respectively. �Figures in parentheses
denote statistical uncertainties.� A quadratic fit of Tm versus
1/L yields the estimate Tc=2.74�4� for the critical tempera-
ture in the infinite-size limit. We also note that the maximum
specific heat values, cm�L�, grow approximately linearly with
ln L, compatible with a critical point in the Ising model uni-
versality class.

Figure 3 shows the order parameter m for L=30 and 50.
The results are consistent with a transition near T=2.8 or so.
Of note is the much smaller finite-size effect in �m as com-

FIG. 1. �Color online� Energy per particle versus temperature
for L=10, 20, 30, and 50 �upper to lower�. Error bars are smaller
than the symbols.
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pared with m in the high-temperature regime, as the fluctua-
tions in the two components of m are nearly equal. The inset
shows that ���L2 /T�var�m� exhibits a well-defined maxi-
mum in the vicinity of the transition.

Based on the present results, we can conclude that the
half-filled system exhibits an �apparently continuous� order-
disorder transition near a temperature of about 2.75. Further
details on the nature of the transition �which from symmetry
considerations should belong to the Ising model universality
class�, must await more extensive studies using larger sys-
tems.

To close this section we show a representative configura-
tion �Fig. 4� for L=50 at temperature T=2. Here the system
has separated into distinct high- and low-density phases. The
latter is quite dilute, while the former clearly reflects the
periodic potential, and possesses a low density of vacancies

or vacancy pairs, as is typical of a lattice gas well below the
critical temperature. The interface between the high- and
low-density regions meanders considerably, and is quite
rough. �A quantitative discussion of the interface roughness
is given below.�

B. Driven system

We determined the stationary properties for various drive
strengths f , for system sizes L=20 and 30, following the
procedure described above. The mean energy is plotted ver-
sus temperature in Fig. 5 for various drive intensities. For a
relatively weak drive �f =1�, the energy is only slightly
greater than in equilibrium; at larger drives we observe a
substantial increase in energy.

In Fig. 6 we compare the scaled energy variance c in
equilibrium and under drive f =1. Although c does not rep-
resent the specific heat for f �0, it is nevertheless reasonable
to suppose that a singularity in c �or a sharp peak, in a finite
system� marks a phase transition. It is therefore interesting to
note that the f =1 data exhibit a sharper peak �and at a

FIG. 2. �Color online� Specific heat per particle versus tempera-
ture for L=10, 20, 30, and 50, in ascending order.

FIG. 3. �Color online� Order parameter m �filled symbols: upper,
L=30; lower, L=50�, and anisotropy �m �open symbols, L=50�
versus temperature. Inset: scaled variance of order parameter, L
=30 �open symbols� and L=50 �filled symbols�.

FIG. 4. Typical configuration, L=50, T=2.

FIG. 5. �Color online� Mean energy per particle versus tempera-
ture for L=30 and �right to left� drive strength f =0, 1, 2, 4, and 7.
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slightly higher temperature� than in equilibrium. This sug-
gests that a weak drive facilitates ordering. For f =1, the
scaled variance �upper inset� follows the same trends as, but
is generally greater than, the specific heat, de /dT. �In this
case we obtain de /dT via numerical differentiation of a poly-
nomial fit to the energy data.� This suggests that the drive
causes fluctuations beyond those generated by thermal
mechanisms. �That is, the drive realizes work on the system
but is not included in the energy balance.� The dependence of
var�e� on system size �lower inset� is qualitatively similar to
that found in equilibrium; we estimate Tc=2.85�5� for f =1.
Analysis of the order parameter �Fig. 7� confirms that a weak
drive �f =1, 2� enhances ordering, whereas a stronger one
inhibits it. These data suggest a transition temperature of
Tc�2, for f =7.

The effect of increasing drive at fixed temperature is
shown in Figs. 8 �energy and its variance� and 9 �order pa-
rameter�. The energy increases slowly with f for a weak
drive, rapidly for intermediate drive strength, and then exhib-
its a steady, more gradual growth for f �8 or so. The energy
variance shows a marked peak �near f =4 for T=2.5, and f
=6 for T=2.0�, which appears to be associated with destruc-
tion of an ordered arrangement. The amplitude of this peak is
much larger than in equilibrium. For larger drives, var�e�
increases steadily with f , as the drive forces particles out of
the periodic potential minima. Figure 9 again shows that a
weak drive enhances ordering. The order parameter reaches a
maximum near f =1–2, and then decays rapidly when the
drive is increased further, and begins to dominate interpar-
ticle attraction.

The stationary current density j, defined as the mean dis-
placement 	�x
 per site and unit time, is plotted as a function
of drive in Fig. 10. For the range of parameters studied here,
j is an increasing function of both f and T. In the disordered
phase �upper set of points in Fig. 10�, the current grows
linearly with f for small f , and then shows signs of saturating
at larger values of the drive. At lower temperatures and weak
drives, such that the system is ordered, the current is severely
reduced, but it takes values comparable to those at higher
temperature once f is large enough to disorder the system.
The latter event is signaled by a sharp peak in the variance of
the energy �Fig. 8�; the singularity �if any� in the current is
much weaker. Our results suggest that below Tc, the particles
are organized into dense stripes oriented along the drive, as
in DDSs; this is confirmed in the configurations shown in
Fig. 11. Comparison of three configurations for T=2, with

FIG. 6. �Color online� Scaled energy variance c versus tempera-
ture T for drive f =1 �upper curve� and in equilibrium �lower�. Up-
per inset: comparison �f =1, L=30� of the scaled variance �points�
and de /dT �smooth curve�. Lower inset: comparison �f =1� of the
scaled variance for system sizes L=20 �open symbols� and L=30
�filled symbols�.

FIG. 7. �Color online� Order parameter versus temperature for
L=30 and drive f =0 �open squares�, 1 ���, 2 �open circles�, 4
�diamonds�, and 7 �filled squares�.

FIG. 8. �Color online� Energy per particle versus drive f for
temperature T=2.5 �open symbols� and 2.0 �filled symbols�, L=30.
Inset: c versus f for the same parameters.
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drive f =1 and 5 �Fig. 11, upper panels� and with zero drive
�Fig. 4� shows that the interface is smoothest in the weakly
driven system. �Under a stronger drive the interface appears
to be more diffuse.�

To quantify the effect of the drive on the interface, we
calculate the interface width. Following the procedure used
in Ref. �19�, we first coarse-grain the configuration, to elimi-
nate vacancies from the high-density strip and isolated occu-
pied sites from the low-density region. This permits unam-
biguous definition of interfaces between the two phases.
Then each column j �or row, should the interfaces be ori-
ented vertically� is characterized by a height hj, given by the
distance between the interfaces. The interface width w is
then defined via w2=var�hj�, evaluated by averaging over
columns and over many configurations during the evolution.
Figure 12 shows that in the absence of a drive, w2 increases
linearly with system size L, as expected for the rough inter-
faces characteristic of a two-dimensional lattice gas. In the
presence of a modest drive �f =1,2� the interface width is
sharply reduced; the data are consistent with w2 attaining a
finite limit as L→ �i.e., an asymptotically smooth inter-

face�, though the present data are insufficient to fix the large-
L behavior definitively.

The inset of Fig. 12 shows that, unlike in the driven lattice
gas, a strong drive causes the interface to roughen, as par-
ticles are pulled from the potential minima, and ordering is
reduced. This is also evident in the configuration for T=2
and f =5 shown in Fig. 11. This relatively strong drive in-
duces many vacancies in the high-density phase, and causes
the interfacial region to become diffuse.

FIG. 9. �Color online� Order parameter components m� �upper
curves� and m� �lower curves� versus drive f for T=2.5 �open
symbols� and 2.0 �filled symbols�, L=30.

FIG. 10. �Color online� Current density j versus drive f for T
=3.5 �filled symbols� and 2.0 �open symbols�, L=30.

FIG. 11. Typical configurations in the driven system, L=50.
Upper left: T=2, f =1; upper right: T=2, f =5; lower left: two strip
configuration, T=2, f =1; lower right: T=3, f =1. The drive is di-
rected to the right.

FIG. 12. �Color online� Squared interface width w2 versus L for
�top to bottom� drive f�0, 1, and 2, T=2. Inset: w2 versus f for
L=50, T=2.
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The lower left panel of Fig. 11 shows a configuration well
below the transition temperature, in which two separate
stripes have emerged. Such configurations form readily if a
drive �along x� is applied to a system that has phase sepa-
rated �under zero drive� with the interfaces oriented along the
y direction. As in the driven lattice gas, this appears to be a
very long-lived metastable state at low temperature �7�, as
would be expected in the absence of significant fluctuations
in the interface positions. Figure 11 also shows a typical
configuration in the driven system �f =1�, above the critical
temperature �T=3�; in this case no particle strips are evident,
and there is no obvious signature of the drive in the particle
configuration. �On general grounds one does expect to ob-
serve anisotropic, possibly long-range correlations in a
driven system above its critical point �17�. We defer analysis
of correlation functions to future work.�

C. Moving background potential

We performed some preliminary studies of another
method for perturbing the system out of equilibrium. In this
case there is no drive, but the external potential is time de-
pendent, given by V�x−vt ,y�, with the function V�x ,y� as in
Eq. �1�. �Since the potential is periodic, the first argument of
V is effectively x−vt�mod 1�.� The particles are dragged
along by the moving potential array, as in optical peristalsis
�18�.

Our results in this case are based principally on studies
using L=30; the background potential amplitude V0 is re-
duced from 40 to 10, and the trial particle displacement �x is
uniform on �−0.5,0.5� �similarly for �y�. Otherwise the pa-
rameters are as in the studies reported above. For velocities
v�0.02, there is anisotropic, lattice-gas-like ordering for T
�Tc. �The critical temperature is about 2.5 for v=0.01.� For
larger velocities, v=0.05 or 0.1, the critical temperature is
reduced considerably �Tc�1.8 for v=0.1�. The interface be-
tween phases is again oriented along the x direction, but for
v�0.05 the particle configuration �Fig. 13� shows little evi-
dence of periodic structure. While there is some tendency for
particles to form rows of constant y �as expected, if particles

follow the moving potential wells�, the positions along the
drive direction seem quite irregular.

IV. CONCLUSIONS

We study a two-dimensional model of colloidal particles
subject to a periodic external potential and an interaction that
favors ordering in a lattice-gas-like arrangement. Stationary
properties are determined via Monte Carlo simulation. In
equilibrium, the specific heat and the order parameter exhibit
behaviors typical of a second-order phase transition. When
the hopping dynamics is biased by a weak drive, we observe
anisotropic phase separation: the interface is oriented along
the drive, and is much smoother than in equilibrium, as
found in DDSs �19�. Similarly to attractive DDSs, in which
ordering is facilitated by the drive, we find that a weak drive
favors ordering. A strong drive, by contrast, tends to destroy
order, and provokes very large energy fluctuations. �The
strong drive pulls particles off the minimum-potential posi-
tions, which is not possible on the lattice.� Preliminary analy-
sis indicates that a colloidal system under a moving back-
ground potential may offer another realization of anisotropic
phase separation.

A principal characteristic of driven systems is ordering
into stripes or lanes oriented along the drive. This tendency
has been noted in the present system, and in DDSs in gen-
eral, as well as in model systems of �1� particles interacting
via short-range attraction and long-range �Coulombic� repul-
sion, subject to an external drive and a quenched disordered
background �20�; and �2� a binary colloid mixture with par-
ticles driven in opposite directions, in both two and three
dimensions �21�. It therefore seems likely that lane formation
is a generic feature of ordered phases in driven systems.

Our results suggest that a suspension of colloidal particles
with short-range repulsive forces and slightly longer-range
attraction, in the presence of a periodic external potential
�with a lattice constant matched to the interparticle potential
minimum�, provides a good candidate for realization of both
equilibrium and driven lattice gases. Although the physics of
such a continuous space system is richer than the corre-
sponding lattice model, there is good reason to expect that
similar scaling properties will emerge, in a suitable range of
parameter values. While the equilibrium model could in prin-
ciple be realized using a planar optical-tweezer array to pro-
vide the external potential, the driven system must, by na-
ture, have periodic boundary conditions along the drive
direction. This suggests a cylindrical geometry, with the driv-
ing force provided by Stokes drag on the particles in steady
Couette flow. �This scheme, without the optical-tweezer ar-
ray, could also be used to realize the type of system studied
in Ref. �10�.� Alternatively, one could impose relative rota-
tional motion between the colloidal suspension and the twee-
zer array. We defer analysis of the feasibility of such a setup
to future work.

Many additional aspects of the system remain to be ex-
plored theoretically and in simulations. While the present
study uses �because of its greater efficiency� Monte Carlo
simulation to map out equilibrium properties and nonequilib-
rium steady states, the driven system should be investigated

FIG. 13. Typical configuration under moving background poten-
tial, L=50, v=0.1, T=1.5.
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via Langevin dynamics. Aside from affording a better ac-
count of nonequilibrium stationary and time-dependent prop-
erties, this method would allow for inclusion of hydrody-
namic interactions between the particles and with container
walls. Preliminary studies of the model system studied here
using the Langevin equation in fact yield qualitatively simi-
lar results to those reported above �22�. It would also be
interesting to remove the periodic boundaries in the direction
perpendicular to the drive, and the restriction to two dimen-

sions. More detailed characterization of the phase transitions
exhibited by this system, both in and out of equilibrium,
using large-scale simulations, are planned for future work.
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